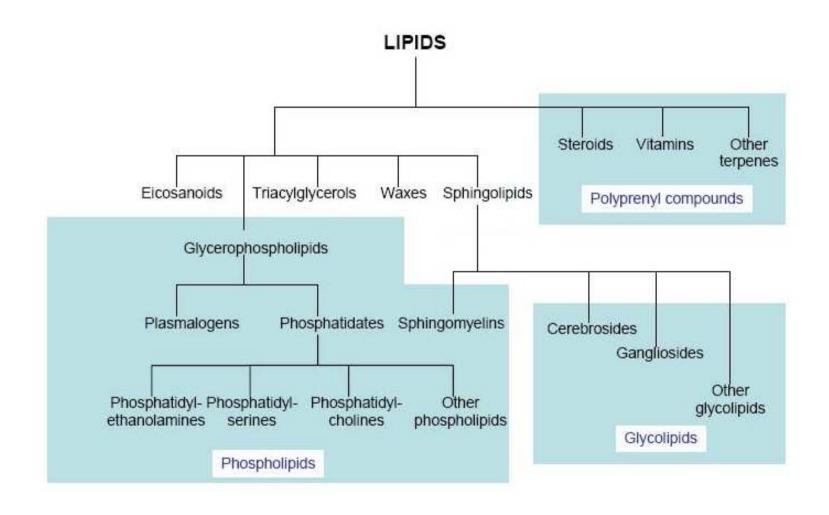


FOOD CHEMISTRY

Chapter 3 : Lipids

3.1 DEFINITIONS AND CLASSIFICATION What are the lipids?

There is no widely-accepted definition



Naturally occurring compounds, which have in common a ready solubility in organic solvents such as hydrocarbons, chloroform, benzene, ethers and alcohols.

Fatty acids and their derivatives, and substances related biosynthetically or functionally to these compounds.

3.1 DEFINITIONS AND CLASSIFICATION *The lipid families*

3.1 DEFINITIONS AND CLASSIFICATION

A recent lipid classification

Acyl glycerol lipids Glycerol esterified with one to three fatty acids

Glycolipids Carbohydrate associated to acylglycerols or fatty acids

Phospholipids Acylglycerol esterified with one or two phosphate moieties

Sphingosides Long-chain bases linked to a fatty acid

Sterols Substituted hydroxy-sterane

Tocols Substituted long chain benzopyrane

Waxes Long chain esters of fatty acids

E. Fahy & al., J. Lipid Res., <u>46</u>, 839-861 (2005)

3.2 SOURCES Occurrence of lipids in food and seeds

FOOD	% lipids
Butter	83
Potato chips	40
Milk chocolate	32
Egg	11
Chicken meat	6
Milk	4
Cod	1

SEEDS	% lipids
Cocoa	55
Peanuts	45
Canola	40
Palm	40
Sunflower	40
Olive	30
Soybean	20

3.3 FATTY ACIDS

Fatty acids Carboxylic acids with aliphatic chains

Acyl glycerol lipids Glycerol esterified with one to three fatty acids

Glycerophospholipids Acylglycerol esterified with one or two phosphate moieties

Sphingosides Long-chain bases linked to a fatty acid

Sterols Substituted hydroxy-sterane

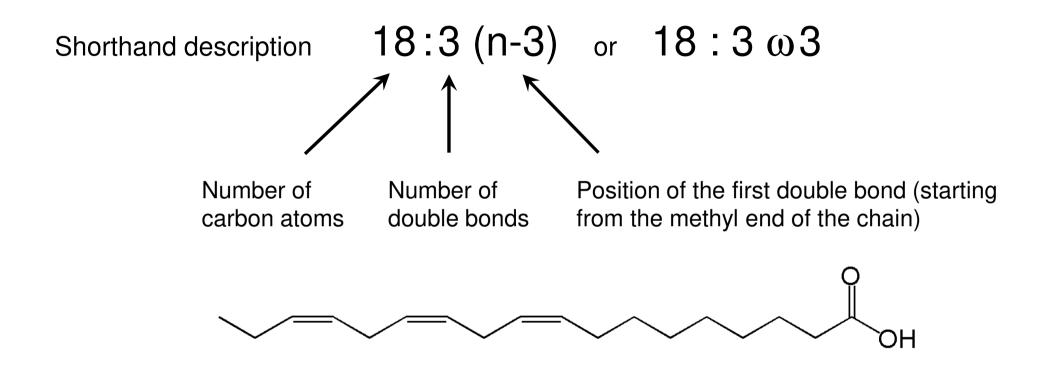
Tocols Substituted long chain benzopyrane

Waxes Long chain esters of fatty acids

3.3 FATTY ACIDS *Types of fatty acids*

Saturated FA

Hydroxylated FA

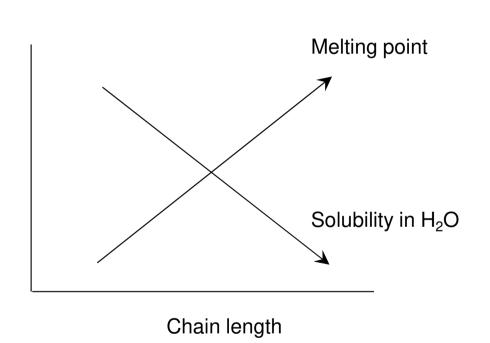

Trans mono-unsaturated FA

Iso branched FA

Ante-iso branched FA

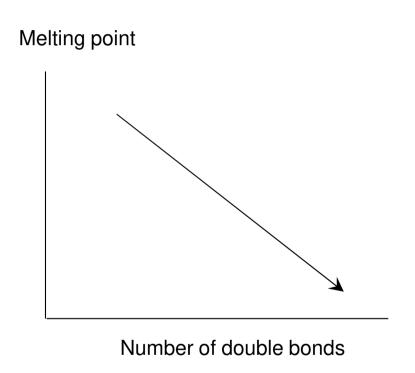
All-cis poly-unsaturated FA

3.3 FATTY ACIDS Nomenclature


- ► Assumes that double bonds are all cis.
- ► Assumes that double bonds are separated by a methylene group.

3.3 FATTY ACIDS Trivial names of some fatty acids

16:0	Palmitic acid	18:3(n-3)	α-linolenic acid
18:0	Stearic acid	18:3(n-6)	γ-linolenic acid
18:1(n-9)	Oleic acid	20:0	Arachidic acid
18:2(n-6)	Linoleic acid	22:1(n-9)	Erucic acid

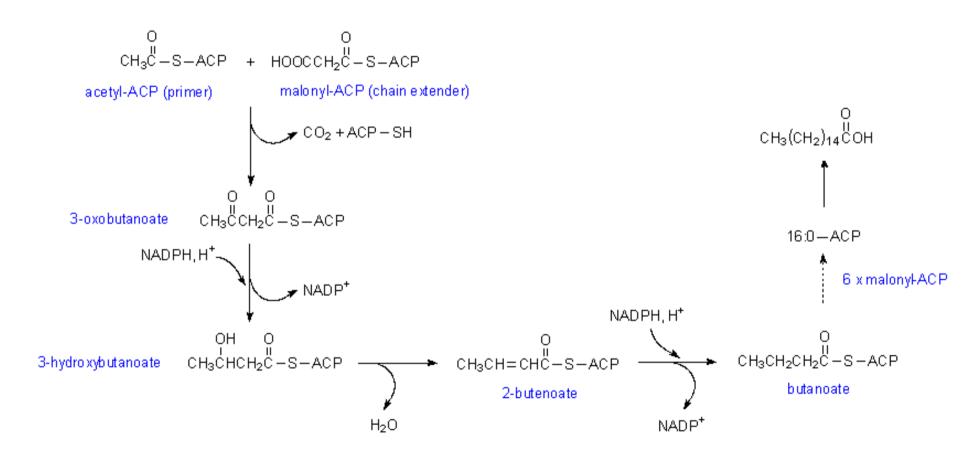

3.3 FATTY ACIDS Some unsaturated fatty acids

3.3 FATTY ACIDS Effect of chain length on solubility and melting points

Fatty acid	MP (°C)	Sol in H ₂ O (mg/l)
C4	- 8	
C6	- 4	9700
C8	16	750
C10	31	60
C12	44	5.5
C14	54	1.8
C16	63	0.8
C18	70	0.4

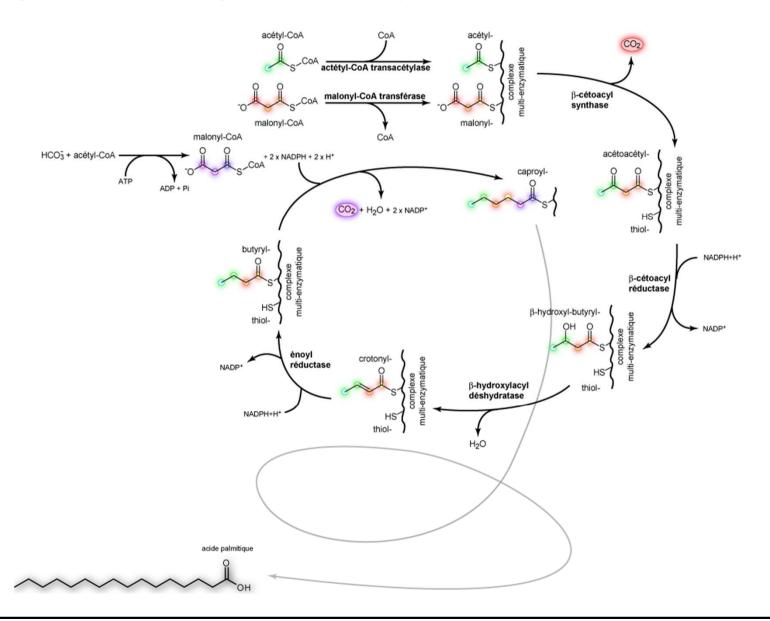
3.3 FATTY ACIDS Effect of double bonds on melting points

Fatty acid	MP (°C)
C16:0	60
C16:1	1
C18:0	63
C18:1	16
C18:2	-5
C18:3	-11
C20:0	75
C20:4	-50


3.3 FATTY ACIDS Melting points and composition of oils

	Sunflower oil	Soya oil	Peanut oil	Palm oil	Coconut oil
Melting point range (°C)	-18 to -20	-8 to -18	-2 to -3	23 to 30	20 to 28
% of saturated fatty acids	12	14	18	84	87

3.3 FATTY ACIDS


Even numbers of carbon atoms : biosynthesis of palmitic acid

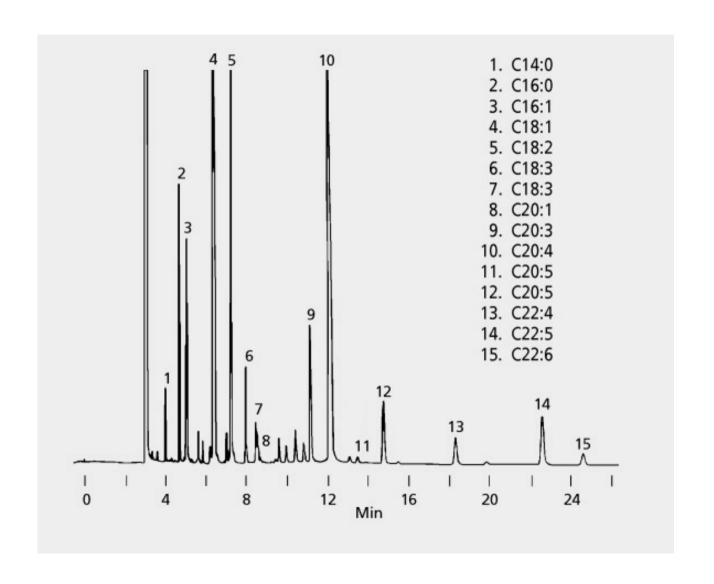
ACP: Acyl carrier protein

3.3 FATTY ACIDS

Lipogenesis: biosynthesis of palmitic acid

3.3 FATTY ACIDS *Uncommon fatty acids*

Ricinoleic acid (90% of castor bean oil) E1503


Furanoïd fatty acids (up to 6% of fish liver oil)

Rumenic acid (a conjugated linoleic acid – CLA – found in milk)

3.3 FATTY ACIDS Distribution in some oils and fats (in percents)

Fatty acid	Peanut	Rapeseed	Olive	Sunflower	Palm	Butter	Lard	Fish oil
6:0						2		
8:0						1		
10:0						2		
12:0						3		
14:0					1	9	2	7
16:0	10	5	13	6	44	24	26	16
16:1 (n-7)			2			1	3	9
18:0	2	2	3	4	4	8	14	3
18:1 (n-9)	43	15	71	25	40	17	44	11
18:2 (n-6)	36	77	11	64	10	1	10	4
20:0	1							
20:1 (n-9)	2							
20:4 (n-4)	3							
20:5 (n-3)								18
22:6 (n-3)								12

3.3 FATTY ACIDS Gas chromatography of fatty acids methyl esthers

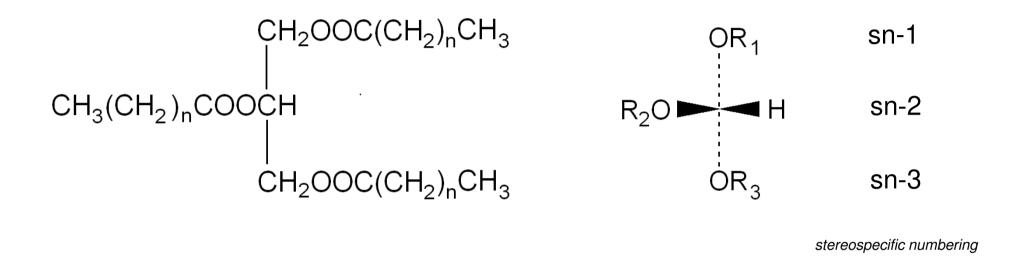
3.4 ACYL GLYCEROLS

Fatty acids Carboxylic acids with aliphatic chains

Acyl glycerol lipids Glycerol esterified with one to three fatty acids

Glycolipids Carbohydrate associated to acylglycerols or fatty acids

Phospholipids Acylglycerol esterified with one or two phosphate moieties

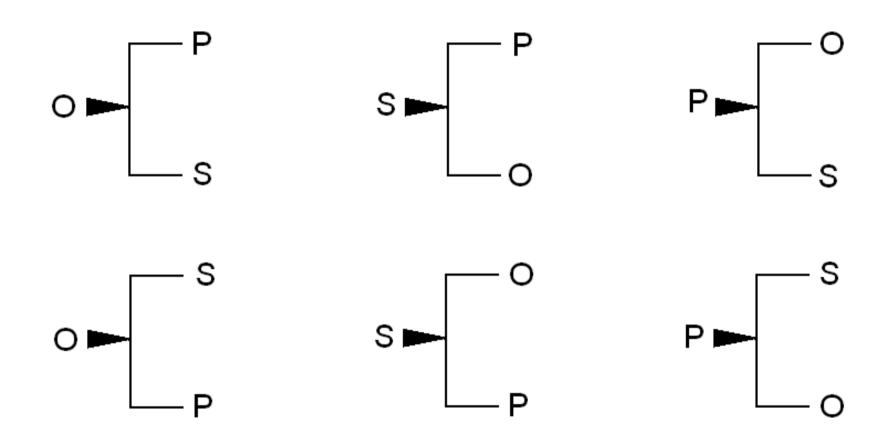

Sphingosides Long-chain bases linked to a fatty acid

Sterols Substituted hydroxy-sterane

Tocols Substituted long chain benzopyrane

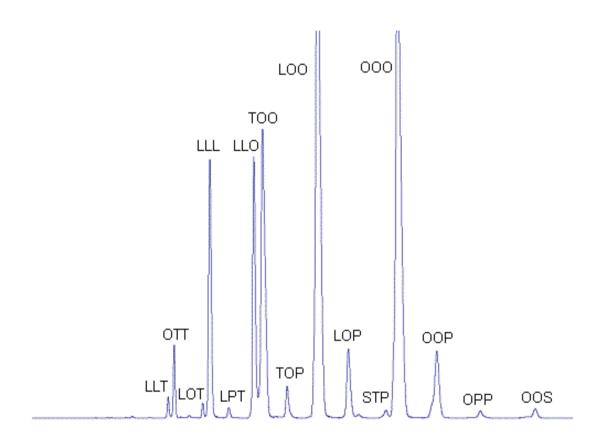
Waxes Long chain esters of fatty acids


3.4 ACYL GLYCEROLS The Hirschmann numbering system


OPL means Oleic (18:1) in pos. sn-1, Palmitic (16:0) in sn-2 and Linoleic (18:2) in sn-3

H. Hirschmann, J. Biol. Chem. <u>235</u>, 2762-2767 (1960)

3.4 ACYL GLYCEROLS Stereoisomers of dipalmitoylstearyl-glycerol



3.4 ACYL GLYCEROLS Stereoisomers of palmitoylstearyloleyl-glycerol

3 regioisomers, each having 2 enantiomers

3.4 ACYL GLYCEROLS HPLC of triacylglycerols from low-erucic rapeseed oil

P = palmitate, S = stearate, O = oleate, L = linoleate, T = linolenate

3.5 FUNCTIONALIZED LIPIDS

Fatty acids Carboxylic acids with aliphatic chains

Acyl glycerol lipids Glycerol esterified with one to three fatty acids

Glycolipids Carbohydrate associated to acylglycerols or fatty acids

Phospholipids Acylglycerol esterified with one or two phosphate moieties

Sphingosides Long-chain bases linked to a fatty acid

Sterols Substituted hydroxy-sterane

Tocols Substituted long chain benzopyrane

Waxes Long chain esters of fatty acids

3.5 FUNCTIONALIZED LIPIDS Structure of glycolipids

Galactosyldiacyl-glycerol

Abundant in chloroplast membranes

(up to 25% in spinach)

3.5 FUNCTIONALIZED LIPIDS

Fatty acids Carboxylic acids with aliphatic chains

Acyl glycerol lipids Glycerol esterified with one to three fatty acids

Glycolipids Carbohydrate associated to acylglycerols or fatty acids

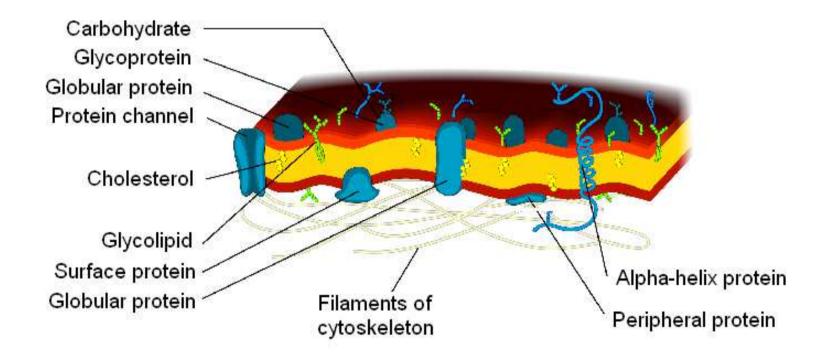
Phospholipids Acylglycerol esterified with one or two phosphate moieties

Sphingosides Long-chain bases linked to a fatty acid

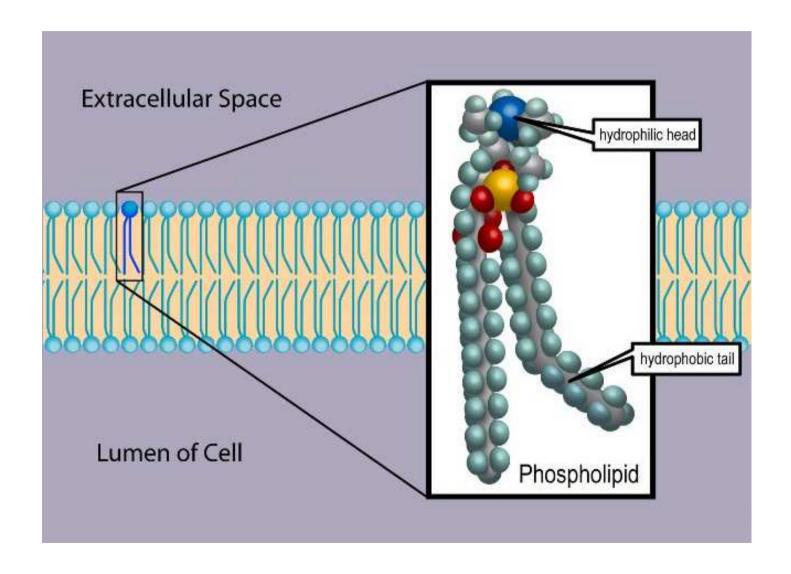
Sterols Substituted hydroxy-sterane

Tocols Substituted long chain benzopyrane

Waxes Long chain esters of fatty acids


3.5 FUNCTIONALIZED LIPIDS Some phospholipids

Phosphatidyl-ethanolamine


$$\begin{array}{c} \text{CH}_2\text{OCOR} \\ \mid \\ \text{RCOO-CH} \\ \mid \\ \mid \\ \text{CH}_2\text{-O-P-O-CH}_2\text{CH}_2\text{-N(CH}_3)_3 \\ \mid \\ \text{O} \end{array} \qquad \begin{array}{c} \text{Phosphatidyl-choline} \\ \text{(lecithin)} \end{array}$$

Phosphatidyl-serine

3.5 FUNCTIONALIZED LIPIDS Cell membrane diagram

3.5 FUNCTIONALIZED LIPIDS Lipid bilayer of cell membranes

3.6 STEROLS AND TOCOLS

Fatty acids Carboxylic acids with aliphatic chains

Acyl glycerol lipids Glycerol esterified with one to three fatty acids

Glycolipids Carbohydrate associated to acylglycerols or fatty acids

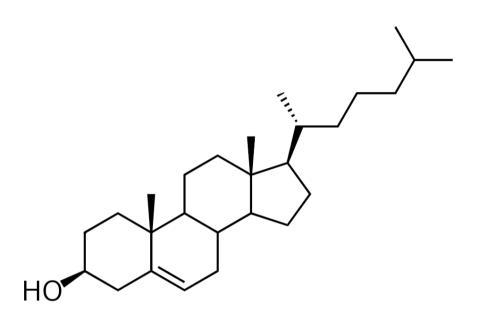
Phospholipids Acylglycerol esterified with one or two phosphate moieties

Sphingosides Long-chain bases linked to a fatty acid

Sterols Substituted hydroxy-sterane

Tocols Substituted long chain benzopyrane

Waxes Long chain esters of fatty acids

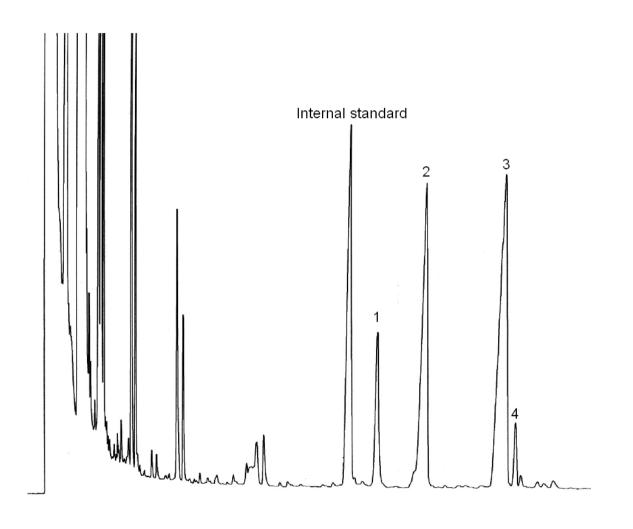

3.6 STEROLS AND TOCOLS Biosynthesis of isoprenoïd compounds

DMAPP Dimethylallyl pyrophosphate

IPP Isopentenyl pyrophosphate

GPP Geranyl pyrophosphate

3.6 STEROLS AND TOCOLS Cholesterol occurence



C27 - sterol

Food	Amount (mg/100g)		
Calf brain	2'000		
Egg yolk	1'000		
Pork kidney	410		
Pork liver	340		
Butter	240		
Pork meat	70		
Beef meat	60		
Halibut	50		

3.6 STEROLS AND TOCOLS Some phytosterols

3.6 STEROLS AND TOCOLS Phytosterol analysis of rapeseed oil by gas chromatography

- 1 Brassicasterol
- 2 Campesterol
- 3 Sitosterol
- 4 Avenasterol

3.6 STEROLS AND TOCOLS Phytosterol contents of some oils (in %)

Oil	Total PS (%)	Campesterol	Stigmasterol	Sitosterol	Avenasterol
Peanut	0.25	13	11	75	-
Corn	0.90	22	7	62	4
Rapeseed	0.84	29	-	55	6
Olive	0.16	4	2	85	9
Soya	0.37	22	19	54	2
Cocoa	0.25	9	28	63	-

3.6 STEROLS AND TOCOLS Structures of tocols

$$R_1$$
 R_2
 O

Tocopherols (T)

$$R_1$$
 R_2
 O

Tocotrienols (TT)

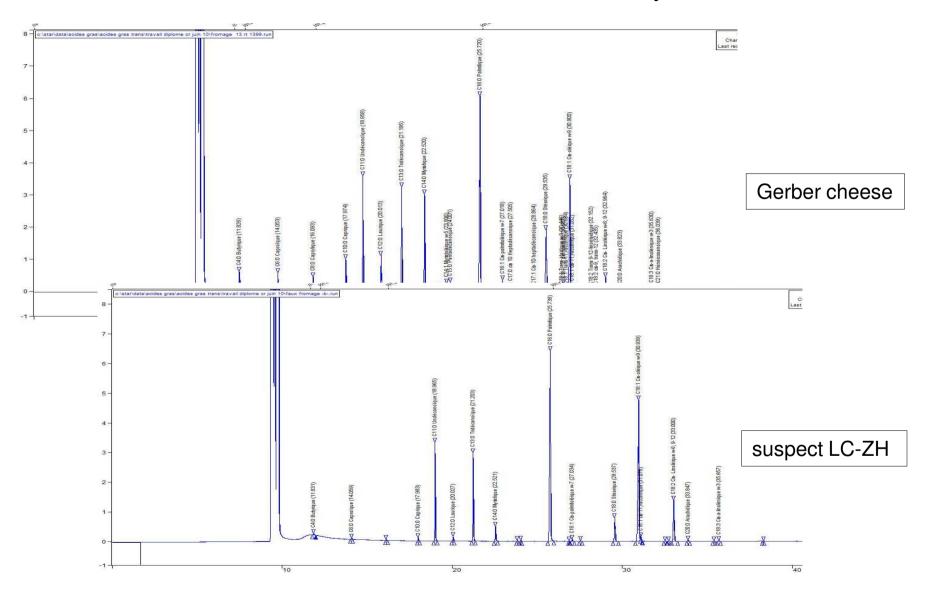
T/TT	R ₁	R ₂
α	CH ₃	CH ₃
β	CH ₃	Ι
γ	Н	CH ₃
δ	Н	Н

3.6 STEROLS AND TOCOLS Occurrence of tocols (in ppm)

Oil	α -T	β-Т	γ -Τ	δ -Τ	α -TT	β-TT	γ -ΤΤ	δ-TT
Palm	170	1	30	-	200	2	340	65
Soja	100	8	1150	440	-	-	-	-
Sunflower	760	25	15	-	-	-	-	-
Corn	280	55	1050	55	50	8	160	5
Rapeseed	210	60	550	15	1	-	-	-

3.7 CHESE - Imitation - composition

Lasagne al Forno-assiette de pâtes avec de la viande hachée. Conditionnée sous atmosphère protectrice. Ingrédients: tomates, viande porc, lait entier, semoule de blé dur, eau, fromage, huile végétale, amidon de maïs modifié, protéine de lait, œufs entiers, farine de blé, sel de cuisine, sucre, épices, herbes aromatiques, céleri, levure, farine de graine de caroube, citrate de sodium. Sans exhausteurs de goût. Sans addition de conservateurs. Sans addition de colorants.

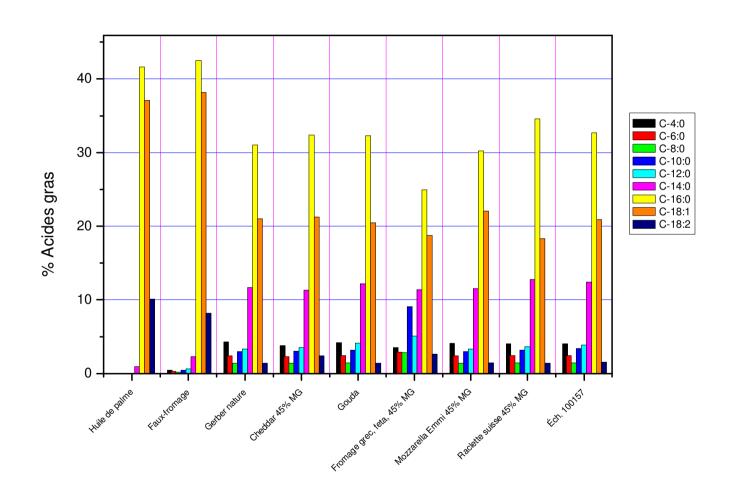

Recipe (cheese ?): Vegetable fat, some protein of milk, add some starch, some salt, a pinch of colouring agents, aromas and flavor enhancers

Ingredients: tomatoes, meat pork, whole milk, wheat, water, cheese, vegetable oil, starch of modified corn, protein of milk, eggs, wheat flour, common salt, sugar, spices, aromatic herbs, celery, yeast, flour of seed of carob, citrate of sodium. Without flavor enhancers. Without conservatives' Without addition of colouring agents

3.7 CHESE – Imitation - analytical strategy

- the distribution in fatty acids
- the presence of phytostérols
- the content in cholesterol
- the presence of plant or animal DNA

3.7 CHESE - Imitation - distribution in fatty acids



3.7 CHESE - Imitation - distribution in fatty acids

	Acides gras								
Échantillons	C-4:0 Butyrique	C-6:0 Caproïque	C-8:0 Caprylique	C-10:0 Caprique	C-12:0 Laurique	C-14:0 Myristique	C-16:0 Palmiřique	C-18:1 Oléique	C-18:2 linoléique
Gerber bonjour 45% MG	4.21	2.40	1.41	3.15	3.60	12.07	32.08	20.16	1.4
Gerber fromage fondu ‡ gras	4.32	2.57	1.49	3.27	3.73	12.55	33.83	19.41	0.0
Lait condensé	4.55	2.5	1.51	3.52	3.94	12.42	30.84	20.22	1.62
Lait de soja	0.0	0.0	0.0	0.0	0.0	0.0	10.78	18.44	57.16
Gouda	4.17	2.46	1.41	3.15	4.14	12,19	32.26	20.47	1.36
Fromage grec, feta, 45% MG	3.56	2.88	2.80	9.04	5.10	11.35	24.96	18.78	2.64
Mozzarella Emmi 45% MG	4.07	2.36	1.36	2.98	3.3	11.53	30.22	22.07	1.44
Raclette suisse 45% MG	4.05	2.43	1.44	3.16	3.64	12.75	34.61	18.32	1.36
Éch. 100157	4.05	2.44	1.45	3.4	3.86	12.39	32.71	20.9	1.54
Éch. 100158	3.76	2.36	1.48	3.47	4.34	12.62	33.19	19.51	1.4
Huile de palme	0.0	0.0	0.0	0.0	0.0	0.96	41.6	37.1	10.1
Faux-fromage	0.43	0.26	0.18	0.40	0.61	2.3	42.5	38.14	8.19

FA composition

3.7 CHESE - Imitation - distribution in fatty acids

3.7 CHESE - Imitation - presence of phytostérols

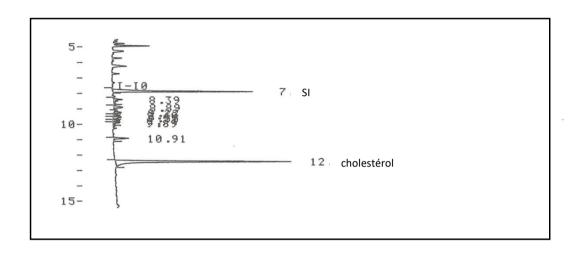
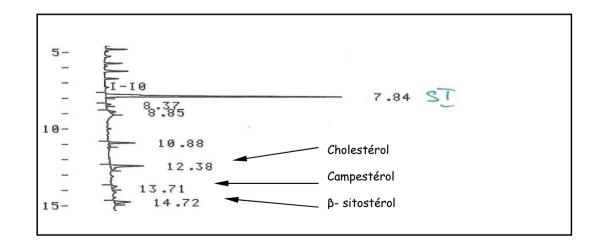



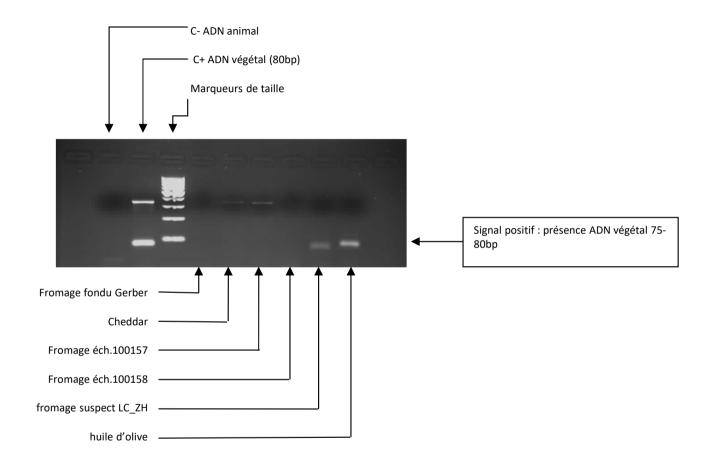
Fig.3.11. Composition en stérols de l'échantillon fromage fondu Gerber

Fig.3.12. Composition en stérols de l'échantillon fromage suspect LC-ZH

3.7 CHESE – Imitation - content in cholesterol

Gerber cheese : 1437 mg/kg de MS

<u>Cheddar</u> : 1295 mg/kg de MS


<u>Cheese N° 100157</u> : 1300 mg/kg de MS

<u>Cheese N° 100158</u> : 1380 mg/kg de MS

suspect cheese LC-ZH : 184 mg/kg de MS

MS : dry matter

3.7 CHESE - Imitation - presence of plant or animal DNA

3.7 WAXES

Fatty acids Carboxylic acids with aliphatic chains

Acyl glycerol lipids Glycerol esterified with one to three fatty acids

Glycolipids Carbohydrate associated to acylglycerols or fatty acids

Phospholipids Acylglycerol esterified with one or two phosphate moieties

Sphingosides Long-chain bases linked to a fatty acid

Sterols Substituted hydroxy-sterane

Tocols Substituted long chain benzopyrane

Waxes Long chain esters of fatty acids

3.7 WAXES Composition and properties

Waxes: mixtures of - long chain esters of fatty acids

- fatty alcools

- long chain hydrocarbons

Present on the surface cells to prevent dehydration or infection of microorganisms

Present in fish oils, epidermal cells and animal products (e.g.bees wax)

Waxes are oil-soluble and crystallize at room temperature

Waxes are removed during the edible oil refining process

3.7 WAXES Some natural fatty alcools and ketones

$$\bigcap_{7}$$
OH

Stearoyl alcool C₁₈H₃₇OH

Abundant in fish oil

$$\left\{ \begin{array}{c} OH \\ G \end{array} \right\}_{6}$$

Nonacosane-15-ol (C₁₄H₂₉)₂CHOH

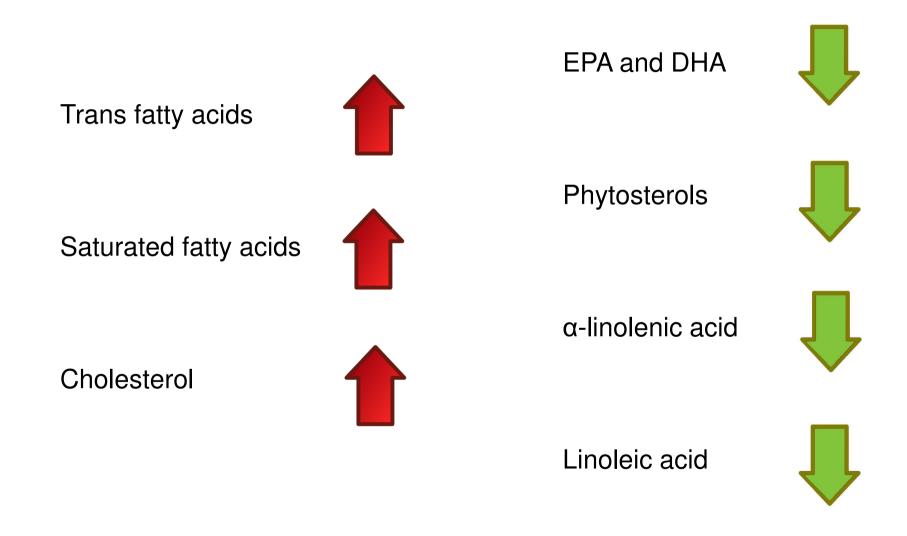
Present in cabbage leaf wax

N-alcanones C23 to C33 (odd numbers!)

Present on the surface of apple skin

3.7 WAXES Some natural fatty esters and alcenes

Triacontanylpalmitate C₁₅H₃₁COOC₃₀H₆₁ *Principal component of beeswax*


18:1, 20:1 and 22:1 fatty acids linked to 20:1, 22:1 and 24:1 fatty alcohols Present in jojoba oil (Simmondsia chinensis)

Squalene

Shark liver oil, rice bran, wheat germ and olives

3.8 NUTRITIONAL ASPECTS Association between lipids and cardiovascular risks

3.8 NUTRITIONAL ASPECTS Dietary recommendations

Values for a 2'000 kcal diet	Lowest physiological need (g)	Recommended daily allowance
Total fatty acids (FA)	30	35 - 40
C18:2 (n-6) Linoleic acid	2	4
C18:3 (n-3) α-linolenic acid	0.8	1
C22:6 (n-3) DHA	0.25	0.25
C20:5 (n-3) EPA	-	0.25
Saturated FA	-	< 12
Trans - FA	-	< 1.5

The ratio ω -6 / ω -3 should be lower than 5

In many western diets, it lies between 10 and 25!

3.8 NUTRITIONAL ASPECTS Occurrence of the ω -3 family

18:3 (n-3) CH_3 - CH_2 - $(CH=CH-CH_2)_3$ - $(CH_2)_6$ -COOH α -linolenic acid (ALA)

20:5 (n-3) CH_3 - CH_2 -(CH=CH- CH_2)₅-(CH_2)₃-COOH Eicosapentaenoïc acid (EPA)

22:6 (n-3) CH₃-CH₂-(CH=CH-CH₂)₆-CH₂-COOH Docosahexaenoïc acid (DHA)

FISH	Name	% EPA/DHA
Tuna	Thunnus spp.	0.3 – 1.3
Salmon	Salmo salar	1.3 – 2.2
Halibut	Hypoglossus spp.	0.7 – 1.3
Swordfish	Xiphias gladius	0.9 – 1.2

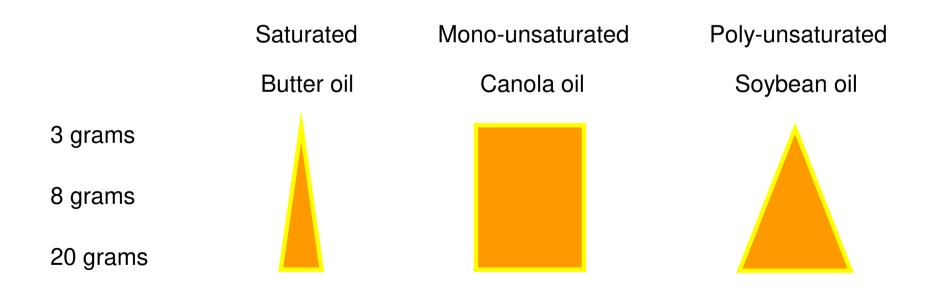
SEED	Name	% ALA
Flaxseed	Linum usitatissimum	18.1
Hempseed	Cannabis sativa	8.7
Walnut	Juglans regia	6.3
Pecan nut	Carya illinoiensis	0.6

3.8 NUTRITIONAL ASPECTS Occurrence of the ω -6 family

18:3 (n-6)
$$CH_3^{-}(CH_2)_4^{-}(CH=CH-CH_2)_3^{-}(CH_2)_3^{-}COOH \gamma$$
-linolenic acid (GLA)

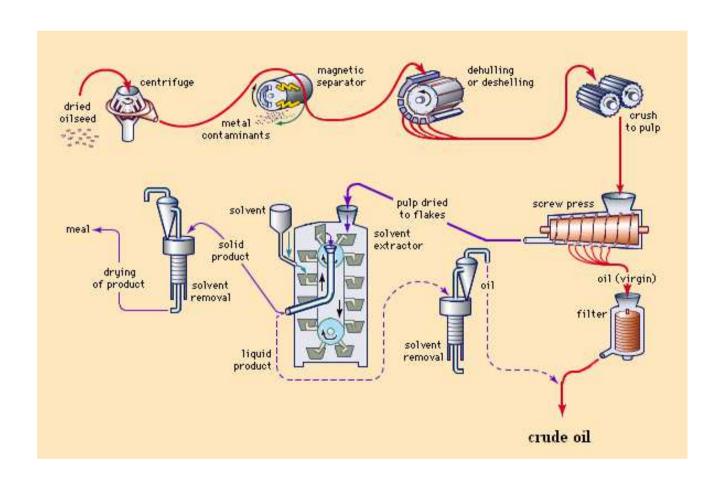
20:4 (n-6)
$$CH_3^-$$
 (CH_2)₄-($CH=CH-CH_2$)₄- CH_2 -COOH Arachidonic acid (ARA)

Product	% LA
Safflower oil	78
Sunflower oil	68
Peanut oil	32
Egg yolk	16
Olive oil	10
Butter	2


Product	% GLA
Borage oil	22
Blackcurrant oil	17
Hemp oil	5

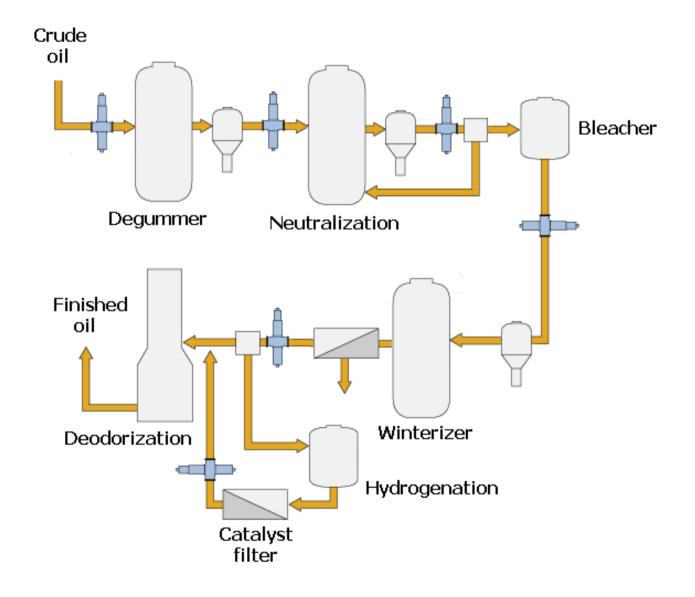
Product	% ARA
Veal liver	1.0
Mutton meat	0.3
Whole egg	0.9

3.8 NUTRITIONAL ASPECTS Effect of fat type on nutrients absorption


Meal triacylglycerol profile modulates postprandial absorption of carotenoids:

Experiment: Salads rich in carotenoïds (lutein, lycopene, beta-carotene and zeaxanthin) topped with 3 different fats

S. R. Goltz & al. Mol. Nutr. & Food Res., <u>56</u> 866 - 877 (2012)


3.9 FATS AND OILS PRODUCTION Oil extraction from oilseeds

3.9 FATS AND OILS PRODUCTION Oil refining steps

Elementary step	Additive	Removed compounds
Degumming	Water / H ₃ PO ₄	Phospholipids (gums)
Neutralization	Water / NaOH	Free FA's Soaps
Bleaching	Adsorbent (eg. bentonite)	Pigments
Winterization	Cooling	Waxes
Deodorization	Steam	Volatile compounds

3.9 FATS AND OILS PRODUCTION Oil refining scheme

3.9 FATS AND OILS PRODUCTION Partial hydrogenation

3.9 FATS AND OILS PRODUCTION

Inter- and intra-esterification

— А В С	Δ → Catalyst	— A — C — B	С A В	С В А
			$\uparrow \downarrow$	
— A — A	— A — A B	— А — В — А	— A — C — A	A A C
А В В	В А В	— A — C — C	C A C	C
С в с	В С С	В С В	В в с	В в в

3.9 FATS AND OILS PRODUCTION The origin of margarine

Emperor Louis Napoleon III of France offered a prize to anyone who could make a satisfactory substitute for butter, suitable for use by the armed forces and the lower classes

3.9 FATS AND OILS PRODUCTION The inventor of margarine

Hippolyte Mège-Mouriès

During the 1860s, the pharmacist Mège-Mouriès studied the chemistry of fats, and his research culminated in 1869 with the filing of a patent for margarine. He won the prize established by Napoléon III, with a butter substitute obtained from beef tallow and skim milk.

In 1871, he sold his patent to the dutch entrepreneur Antonius Johannes Jurgens, whose company Margarine Unie would later become Unilever.

3.9 FATS AND OILS PRODUCTION The current production of margarine

Margarine is a water-in-oil emulsion (80% fat) obtained in essentially four steps:

- Preparation of the oil phase by hydrogenation and/or interesterification
- Emulsification of water or skim milk with the oil phase
- Cooling and mechanical handling of the emulsion
- Freezing and crystallization

Margarin contains many additives: emulsifiers, organic acids, aromas, food colours, preservatives, vitamins

3.10 DEGRADATIONS Types of reactions

Christian Richard

	CAUSATIVE AGENT	MAIN PRODUCTS
Hydrolysis	Water	Free fatty acids Mono- and diacylglycerols
Oxidations	Oxygen	Oxidized acylglycerols Aldehydes Ketones Alcools
Thermal reactions	Heat	Cyclized acylglycerols Di- and oligomeric acylglycerols
Photochemical reactions	Light	Isomers
Enzymatic degradations	Enzymes	Free fatty acids Methylketones

Food Chemistry

Ch.3 Lipids

3.10 DEGRADATIONS *Hydrolysis*

$$\begin{array}{c} \text{CH}_2\text{OCOR} \\ | \\ \text{RCOO-CH} \\ | \\ \text{CH}_2\text{OCOR} \end{array} + 3 \text{ H}_2\text{O} \longrightarrow \begin{array}{c} \text{CH}_2\text{OH} \\ | \\ \text{HCOH} \\ | \\ \text{CH}_2\text{OH} \end{array} + 3 \text{ RCOOH}$$

Produces free fatty acids, glycerol, mono- and diglycerides

Catalysed by H⁺ or OH⁻ ions

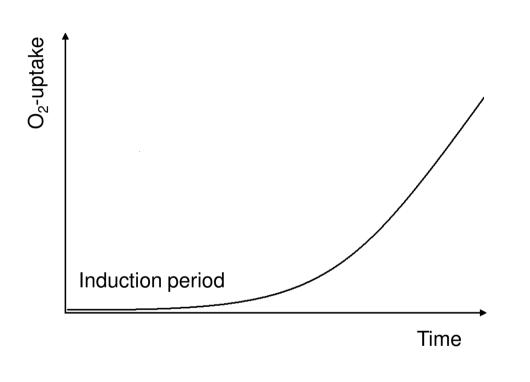
Can occur enzymatically due to *lipases*

- Cause of rancidity defect in raw milk
- ► Useful in certain types of cheese (eg. *Penicillium roqueforti*)

3.10 DEGRADATIONS Enzymatic lipid hydrolysis

Vegetables

Release of enzymes due to mechanical disturbances


	Acyl lipids	Free fatty acids
	(μmol/g)	(μmol/g)
Fresh potato	2.04	1.40
homogenate	2.04	1.40
Potato homogenate after 10	1.71	1.75
minutes at 0°C	1.71	1.75
Potato homogenate after 10	0.54	2.90
minutes at 25°C	0.54	2.30

Pancreatic lipases

Important for the intestinal absorption of FA's

3.10 DEGRADATIONS Kinetics of autoxidation

Rate of oxidation is influenced by:

- Fatty acids composition
- ▶ Presence of anti-oxidants
- Oxygen concentration
- ▶ Water contents
- ▶ Temperature
- ► Light

3.10 DEGRADATIONS Elementary steps of autoxidation

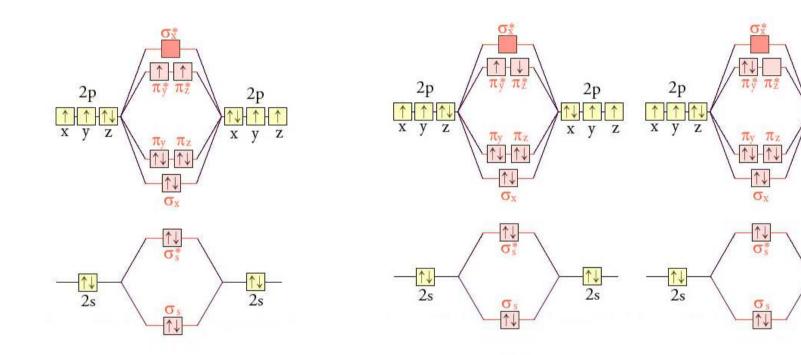
Chain initiation

Formation of R (alkyl), RO (alkoxyl) or ROO (peroxyl) radicals

Chain propagation
$$R^* + O_2 \rightarrow ROO^*$$

$$RH + "OH \rightarrow R" + H_2O$$

Chain amplification


ROOH
$$\rightarrow$$
 RO $^{\circ}$ + $^{\circ}$ OH + ROO $^{\circ}$

Chain termination

$$2 R^{\bullet} \rightarrow R-R$$

$$ROO' + R' \rightarrow ROOR$$

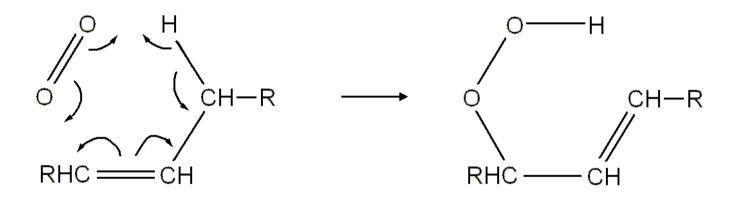
Chain initiation by reaction with singlet oxygen

Triplet state (total spin S=1)

Multiplicity 2S + 1 = 3

Singlet state (total spin S=0)

Multiplicity 2S + 1 = 1


Highly reactive species

х у

^↓ 2s

3.10 DEGRADATIONS Cycloaddition of singlet oxygen

hydroperoxide

Singlet oxygen is a very electrophilic ethylenic type of bond

3.10 DEGRADATIONS Metal-induced radical reactions

Mediated by Fe, Cu, Co, Mn

Example : 2 Heme-Fe²⁺ +
$$O_2$$
 + 2 H⁺ \rightarrow 2 Heme-Fe³⁺ + H_2O_2

Hydrogen peroxide is then decomposed by Fenton reactions:

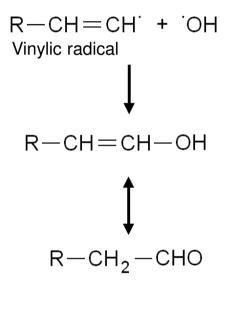
$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^{-} + OH^{-}$$

$$Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + OOH^* + H^+$$

3.10 DEGRADATIONS Homolytic cleavage of hydroperoxides

$$R-CH=CH-CH-CH_{2}-R'$$

$$O-OH$$


$$R-CH=CH-CH-CH_{2}-R'$$

$$R-CH=CH'$$

$$R-CH=CH-CHO$$

$$CH_{2}-R'$$

$$CH_{2}-R'$$

Heterolytic cleavage of hydroperoxides

$$R-CH=CH-CH-CH_{2}-R'$$

$$O-OH$$

$$\downarrow H^{+}$$

$$R-CH=CH-CH-CH_{2}-R'$$

$$O-OH$$

$$H^{+}$$

$$\downarrow$$

$$R-CH=CH-O-CH-CH_{2}-R'$$

$$R-CH=CH-O-CH-CH_2-R'$$

$$\downarrow H_2O$$

$$R-CH=CH-O-CH-CH_2-R'$$

$$\downarrow OH_2$$

$$\downarrow OH_2$$

$$\downarrow OH_2$$

$$R-CH_2-CHO + HOC-CH_2-R'$$

Thermal reactions : formation of cyclic fatty acids in frying oil

Cyclic fatty acid monomers (CFAM) are potentially toxic

Thermally induced prototropic migrations in α -linolenate

Destaillats, F. and Angers, P. Eur. J. Lipid Sci. Technol., 107, 767-772 (2005)

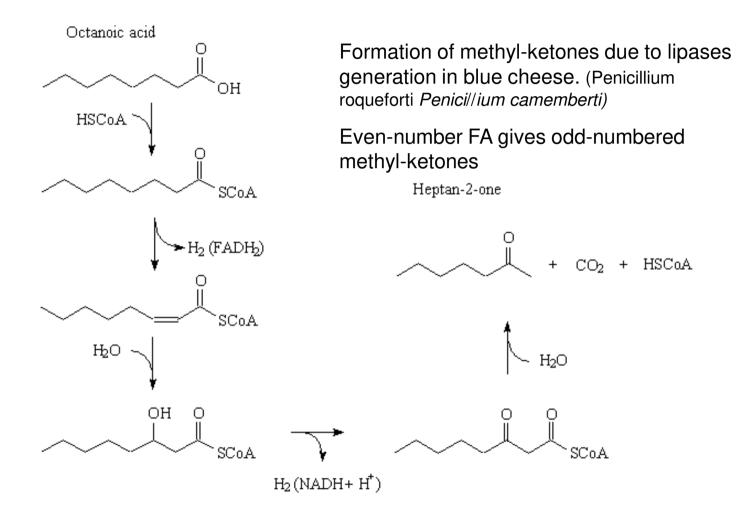
Thermal reactions : formation of cyclic fatty acids in frying oil

Diels-Alder cycloaddition

trans-diene FA (Conjugated)

Monoene FA

Cyclic dimer of FA's (cyclohexene tetrasubstituted structure)


$$\begin{array}{c|c} H_2 COCO(CH_2)_X & \\ \\ H_2 COCO(CH_2)_X & \\ \\ H_2 COCO(CH_2)_Y CH_3 & \\ \end{array}$$

Internal addition (oleic-linoleic dimer)

$$\mathsf{CH_3}(\mathsf{CH_2})_3 - \mathsf{CH_2}$$

$$\mathsf{CH_2}\mathsf{CH} = \mathsf{CH}(\mathsf{CH_2})_4 \mathsf{CH_3}$$

$$\mathsf{(CH_2)_7} - \mathsf{COOH}$$

$$\mathsf{HOOC} - (\mathsf{CH_2})_7 - \mathsf{CH_2}$$

Linoleic acid dimer

3.10 DEGRADATIONS Enzymatic degradations

